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In this paper a turbulent plane channel flow modified by a distributed transpiration
at the wall, with zero net mass flux, is studied through direct numerical simulation
(DNS) using the incompressible Navier–Stokes equations. The transpiration is steady,
uniform in the spanwise direction, and varies sinusoidally along the streamwise
coordinate. The transpiration wavelength is found to dramatically affect the turbulent
flow, and in particular the frictional drag. Long wavelengths produce large drag
increases even with relatively small transpiration intensities, thus providing an efficient
means for improved turbulent mixing. Shorter wavelengths, on the other hand, yield
an unexpected decrease of turbulent friction. These opposite effects are separated by
a threshold of transpiration wavelength, shown to scale in viscous units, related to
a longitudinal length scale typical of the near-wall turbulence cycle. Transpiration is
shown to affect the flow via two distinct mechanisms: steady streaming and direct
interaction with turbulence. They modify the turbulent friction in two opposite ways,
with streaming being equivalent to an additional pressure gradient needed to drive the
same flow rate (drag increase) and direct interaction causing reduced turbulent activity
owing to the injection of fluctuationless fluid. The latter effect overwhelms the former
at small wavelengths, and results in a (small) net drag reduction. The possibility of
observing large-scale streamwise-oriented vortical structures as a consequence of a
centrifugal instability mechanism is also discussed. Our results do not demonstrate
the presence of such vortices, and the same conclusion can be arrived at through a
stability analysis of the mean velocity profile, even though it is possible that a higher
value of the Reynolds number is needed to observe the vortices.

1. Introduction
One of the most effective means of modifying a turbulent wall-bounded flow is

the use of suction or blowing at the wall. Suction is often used as an aerodynamic
flow-control technique to prevent laminar–turbulent transition and flow separation
(Gad-el Hak & Bushnell 1991), whereas blowing can provide insulation between a
hot gas and the solid wall (Ahn, Sung Jung & Lee 2003). A detailed knowledge of
the effects of spatially uniform, steady transpiration on the turbulent flow in a plane
channel or boundary layer is currently available, thanks to a number of experiments
and numerical simulations. Sumitani & Kasagi (1995) for example investigated with
a direct numerical simulation (DNS) the turbulent flow in a channel, where uniform
suction was applied at one wall and uniform injection at the opposite wall. They
detailed how the turbulent friction, the heat transfer and other turbulence statistics
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depend on the intensity of the wall forcing, and confirmed that suction increases
friction and decreases turbulent fluctuations, while blowing has the opposite effect.

Other studies focused on the spatial response of the turbulent flow to a spatially
localized, steady suction or blowing. For example Antonia, Zhu & Sokolov (1995)
experimentally investigated the effect of suction or blowing through a small spanwise
slot in the wall on a turbulent boundary layer, describing changes in the flow properties
as the flow recovers its original state downstream of the slot. Park & Choi (1999) made
a similar DNS-based investigation by considering a lower forcing intensity compared
to previous investigations. All these studies describe the steady transpiration in terms
of a single parameter, namely the flow rate given by the product of the transpiration
velocity and the gap width.

Spatially distributed, unsteady forcing of a turbulent channel flow was employed by
Choi, Moin & Kim (1994) in a numerical simulation of an active control strategy (the
so-called ‘opposition control’). They imposed as time-dependent boundary condition
at each point of the wall a transpiration velocity equal and opposite to the local
wall-normal component at y+ = 10, and obtained a reduction of the friction drag
of more than 20 %, so demonstrating that in principle a suitable arrangement of
zero-net-mass-flux transpiration can lead to significant reduction of friction. Another
approach is that of Park, Lee & Sung (2001), who applied a spatially localized,
unsteady sinusoidal-in-time wall-normal velocity at a narrow spanwise slot in a
turbulent boundary layer DNS. A related experimental study was presented by Tardu
(2001), who considered localized time-dependent blowing, with a velocity oscillating
sinusoidally in time from zero to its maximum value, i.e. a blowing with non-zero net
mass flux. In both cases the unsteady flow from the slot or the orifice was found to
affect turbulence in a complex way as the flow evolves downstream of the slot. The
effect of the forcing was moreover shown to depend upon its temporal frequency.

In this work we shall study through DNS the effects of a spatially distributed,
steady low-amplitude transpiration. We shall focus on the transpiration represented
by a single sinusoidal wave, characterized by its amplitude A and its longitudinal
wavenumber αt (or, equivalently, its wavelength λt =2π/αt ). We are interested in
low-amplitude transpiration primarily due to the cost associated with its creation in
real systems, and our main objective is to investigate whether and how the turbulent
flow is modified by the selection of a properly distributed transpiration.

To our knowledge, the only paper dealing, though only partially, with the same
flow configuration is that by Jiménez et al. (2001). They investigated numerically the
effect of a wall transpiration proportional to the local instantaneous value of pressure
fluctuations, i.e. they modelled a passive porous surface, and found that the skin
friction increases by up to 40 % without flow separation. The increase is reportedly due
to a large-scale reorganization of the flow: the transpiration adjusts itself into a two-
dimensional spanwise-coherent pattern, producing large rolls of spanwise vorticity,
with a preferred streamwise wavelength of approximately 500 viscous lengths. Jiménez
et al. (2001) in a subset of their numerical experiments studied so-called active porous
walls, i.e. exactly the same flow that is the subject of the present paper. Ten flow
conditions were considered, by varying the strength of the imposed transpiration and
its phase velocity, but the wavelength was kept fixed at the value suggested by the
naturally occurring rolls in the passive porosity case. With active transpiration they
again found friction increases up to 40 %. Jiménez et al. (2001) also performed a
linear stability analysis, by using the mean turbulent velocity profile as the base flow
and a variable turbulent eddy viscosity, with the aim of checking whether the two-
dimensional pattern was caused by an instability mechanism. They found that this is
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indeed the case: at the porosity levels considered, spanwise-coherent fluctuations with
wavelengths longer than approximately 350 viscous lengths turn out to be unstable,
growing into the observed spanwise vorticity rolls. The aim of the present paper is to
complete the assessment of the effects of the sinusoidal transpiration on the turbulent
flow, by investigating in greater detail how they are function of the two parameters
A and λt . Moving transpiration patterns (phase velocity different from zero), as well
as patterns generated by the superposition of multiple Fourier modes will not be
considered.

The present work was also motivated by a second question, for which we have
not obtained a definite answer: whether sinusoidal transpiration is able to generate
large-scale vortical structures oriented in the streamwise direction, as a consequence
of a centrifugal instability mechanism, in analogy with the laminar case (Floryan
1997). We shall briefly discuss this issue in § 5, in connection with the results of
stability calculations that start from the turbulent mean velocity profile and follow
the procedure described by Floryan (1997) for a laminar flow, arguing (Crighton &
Gaster 1976) that turbulence sets up an equivalent laminar flow profile for large-scale
coherent motions.

The structure of the paper is as follows. In § 2 the numerical method and the
computer code employed for the numerical simulations are briefly described, and
§ 2.1 illustrates the spatio-temporal discretization and the parameters adopted in the
simulations. (The Appendix deals with accuracy and error estimation.) In § 3 we
report results concerning the modification of the mean friction through sinusoidal
transpiration at different wavelengths and intensities, with focus on the drag-reducing
regime. A discussion of the physical mechanisms responsible for the change in friction
drag is presented in § 4, and § 5 addresses the issue of large-scale vortices, while § 6 is
devoted to the conclusions.

2. The numerical method
Our DNS code is a parallel solver of the Navier–Stokes equations for an

incompressible fluid. A description of the numerical method can be found in
Luchini & Quadrio (2006). It is based on a mixed discretization: a Fourier expansion
is used for the wall-parallel directions, and high-accuracy compact (explicit) finite-
differences schemes are used in the wall-normal direction, to obtain an efficient parallel
implementation with low communication requirements. Aside from the advantages of
parallel computing discussed by Luchini & Quadrio (2006), when a non-zero vertical
velocity is applied at the wall the use of finite differences in the wall-normal direction
reduces the time-step restriction that would be present if a Chebyshev discretization
were used (Jiménez et al. 2001).

The Navier–Stokes equations are formulated, following Kim, Moin & Moser (1987),
in terms of two scalar equations for the normal component of velocity and the normal
component of vorticity, thus achieving the highest computational efficiency when a
Fourier discretization is adopted for the homogeneous directions. The nonlinear terms
of the equations are computed by a pseudo-spectral approach, using efficient fast-
Fourier-transforms algorithms and dealiasing in the homogeneous directions. The
time advancement employs the widespread partially implicit approach: nonlinear
terms are advanced with an explicit method (a low-storage three-substeps third-
order Runge–Kutta scheme), and linear terms are advanced with an implicit method
(a second-order Crank–Nicolson scheme) to overcome the stability limitations due to
the viscous terms.
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2.1. Computational parameters

The simulations described in the following have been carried out at a value of the
Reynolds number Re = Ubh/ν of 2833, based on the bulk mean velocity Ub and the
channel half-width h. This corresponds to a Reynolds number based on the friction
velocity of Reτ = 180 and to Rec = 3300 when the centreline velocity Uc is used as
reference velocity. A few cases at Re =7000 or Reτ = 400 will also be discussed. As an
alternative to scaling with h and Ub, viscous scaling will also be used in the following:
quantities indicated with a + superscript are made non-dimensional by using the fluid
viscosity and the friction velocity of the reference flow.

We use a coordinate system where x, y and z denote the streamwise, wall-normal and
spanwise directions respectively. The corresponding velocity components are taken as
u, v and w. The boundary conditions in the streamwise and spanwise directions are
periodic, and the transpiration is accounted for through the wall boundary condition
for the wall-normal velocity component:

v (x, ±1, z) = A cos (αtx) , (2.1)

where A is the maximum amplitude of the transpiration. The wavenumber αt is chosen
to be an integer multiple of the fundamental wavenumber in the streamwise direc-
tion, α0 = 2π/Lx , so that the transpiration has a zero net mass flux over each wall.

In the simulations the streamwise flow rate Qx is kept fixed, and a zero mean
spanwise pressure gradient is imposed. The length and width of the computational
domain, as well as the spatial resolution at Reτ = 180, have been chosen following Kim
et al. (1987): we will use Lx =4πh and Lz = 2πh, with Nx = 192, Ny = 129 and Nz = 160.
In a few cases the number of points for each spatial direction is doubled, to account
for the increased resolution requirements due to high-amplitude transpiration. The
cases at Reτ = 400 have a correspondingly increased number of modes, for a total
of more than 6 × 107 degrees of freedom. The Appendix addresses the estimated
accuracy of the computed statistics, in particular of the friction coefficient.

Each simulation is started from a fully developed turbulent flow field computed
in a previous simulation (for the given Re and spatial resolution) with transpiration
turned off, and is run for a total integration time of approximately 4000 and 7500
viscous time units for the low- and high-Re cases respectively. The time evolution of
selected quantities, notably the two components of the space-averaged friction over
the walls, is recorded. When transpiration is turned on, there is an initial transient
where the flow adapts to its new quasi-equilibrium state. This transient is evident in
the time history of the space-averaged friction, and is discarded from the calculation
of the time-averaged value of Cf . Turbulence statistics are computed from flow fields
stored on disk during the calculation: we average over at least 30 fields separated
from each other by ≈120 viscous time units, written to disk after discarding the initial
transient. In addition, friction data from the two walls are averaged to increase the
statistical sample.

3. The mean friction
We have carried out one reference simulation without transpiration, and many

cases with different combinations of A and αt , to measure the time-averaged value of
the space-mean friction coefficient:

Cf =
2τx

ρU 2
b

, (3.1)
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Figure 1. Friction coefficient versus (a) transpiration intensity A+ at fixed wavelength
λ+

t = 1130, and (b) wavelength λ+
t at fixed amplitude A+ = 0.7. The horizontal line marks

the value of Cf in the impermeable case.

where τx is the longitudinal component of the shear stress at the wall, and ρ is the
fluid density.

Figure 1(a) plots the friction coefficient as a function of the transpiration intensity
A+, with the wavenumber fixed at αt = 2α0 corresponding to a forcing wavelength of
λ+

t = 1130. The friction coefficient is observed to increase linearly with A+, and even
with modest intensities the increase in Cf is three-fold. A threshold of minimum A+

is required for the transpiration to affect the turbulent flow: the minimum intensity
at this wavelength is A+ ≈ 0.05, below which the change in Cf becomes comparable
with the measurement uncertainty (see the Appendix).

Figure 1(b) shows how Cf changes with the transpiration wavelength, for fixed
amplitude A+ = 0.7. This plot shows that, as long as λ+

t > 350, there is a significant
increase in friction which tends to reach a plateau at large values of λ+

t .
The region in figure 1(b) at small values of λ+

t deserves particular attention. The
same data are reported with filled circles in figure 2, which enlarges this region. For
wavelengths 100< λ+

t < 350, the friction coefficient goes below the reference value, i.e.
the turbulent flow experiences a decrease of the frictional drag. The maximum drag
reduction with A+ = 0.7 is 3.7 % at λ+

t =226. This percentage change in Cf , though
rather small, is shown by resolution studies (presented in the Appendix) to be larger
than the uncertainty associated with the discretization. The Appendix also illustrates
different checks, such as the use of transpiration over the two walls shifted by half
a wavelength each, and the use of transpiration over a single wall. The negligible
dependence of �Cf on these parameters indicates that the accuracy of the present
results is sufficient to claim a decrease in frictional drag.

The open symbols in figure 2 are for a few cases run at Reτ = 400 and with
correspondingly increased spatial resolution. They are very important, since they
confirm that the drag reduction phenomenon is not a low-Re artifact. Moreover, the
results of two sets of simulations carried out at significantly different values of Re
highlight the wall-units scaling of the governing parameters for drag reduction, which
is obtained via a wall-based forcing.

When λ+
t is in the optimum range, Cf decreases as the intensity of the transpiration

is increased: figure 3 reports the entire range 0 <A+ < 4.7. Open circles correspond
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Figure 2. Percentage variation of the friction coefficient %�Cf =100(Cf,t −Cf,0)/Cf,0 versus

transpiration wavelength λ+
t , at fixed intensity A+ =0.7. Filled circles, Reτ = 180; open circles,

Reτ = 400. The error bar for the point at λ+
t = 225 indicates the error estimate reported in the

Appendix (table 1).
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Figure 3. Percentage variation of the friction coefficient %�Cf =100(Cf,t −Cf,0)/Cf,0 versus

intensity A+, at fixed λ+
t = 226 and Reτ = 180. Open circles are cases with baseline resolution;

error bars refer to error estimates reported in the Appendix (table 1). Filled circles have
the spatial resolution doubled in each coordinate direction, and are thus quantitatively more
reliable.

to simulations at Reτ = 180 and baseline resolution, and show clearly a trend of
increasing drag reduction with increasing A+. The resolution study described in the
Appendix indicates, however, that beyond some amplitude threshold the baseline
resolution is no longer sufficient to guarantee truly resolution-independent results:
this can be appreciated from the two error bars, since the one at A+ = 2.8 is not
negligible in comparison to %�Cf . Selected simulations have thus been repeated
with spatial resolution doubled for each spatial direction (and the time-step size
reduced accordingly). The increase of drag reduction with A+ is fully confirmed by
these highly resolved simulations, and we have reached a value of 13 % for the highest
tested value of A+ = 4.7.
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4. Discussion
Wall transpiration alters the friction coefficient of the turbulent flow, through one

(or both) of two distinct mechanisms: (i) direct interaction with the turbulence, and
(ii) streaming induced by the transpiration wave. Our first aim is to discriminate
between these two physical processes, and to ascertain their relative importance.

Streaming (or steady streaming or acoustic streaming) is the phenomenon, already
known to Rayleigh (1883), by which an oscillatory flow may result in a non-zero
mean. Several flows where steady streaming is important have been discussed in the
review article by Riley (2001). Streaming takes place whenever a wave in relative
motion with respect to a fluid undergoes viscous dissipation; we may have streaming
in the present flow because the transpiration wave is fixed in space while the flow
convects downstream. The important effect of streaming is an additional flow rate
(or thrust) that adds to any drag change due to turbulence modification: streaming
creates a flow rate – in a direction to be determined – without a pressure gradient.

To establish the relative importance of mechanisms (i) and (ii), we consider the
streamwise component of the mean momentum equation. Instead of the usual average
over time and homogeneous directions, however, the dependence of flow statistics on
the streamwise coordinate is retained. When statistics are averaged over x too, the
usual full average is obtained, indicated with 〈·〉. We shall indicate with a tilde
quantities averaged over t and z only, e.g. ũ= ũ(x, y). It follows by definition that

〈u(y)〉 =
1

Lx

∫ Lx

0

ũ(x ′, y) dx ′.

The tilde-averaged x component of the momentum equation becomes

0 =
1

Re

d2ũ

dy2
− 1

ρ

dp

dx
− d

dy
[ ˜(u − ũ)(v − ṽ) + ũṽ].

The last term is absent in the impermeable case, where ṽ ≡ 0, so that it becomes

natural to associate it with streaming, whereas the difference in ˜(u − ũ)(v − ṽ) between
the impermeable and porous case is taken as an indicator of the direct interaction of
transpiration with turbulence. Two representative simulations with transpiration are
considered at Reτ = 180, with the same discretization parameters as described in § 2.1.
The main difference between these cases and those described in § 3 is that they are
under the constraint of constant pressure gradient, instead of constant flow rate. The
first case has A+ = 0.9 and λ+

t = 565, and results in a drag increase; the second case
with A+ = 0.57 and λ+

t = 226 presents a decreased drag.
Figure 4 reports the profile of the quantity Reτ

∫ y

0
(ũṽ)+dy ′, together with

the difference between the reference mean velocity profile and the profile with
transpiration. The integral in y of this latter quantity expresses the increase or
decrease of flow rate due to transpiration as a whole; the integral of the former is the
contribution by streaming alone. It follows that the difference between the two can
be associated with the direct effect of transpiration on turbulence.

For the drag-increasing case, the global effect is a decrease of the flow rate
by −10.8 % compared to the impermeable case. The contribution by streaming
alone is an even larger decrease (namely −13.1 %). Hence the direct interaction with
turbulence, though smaller, is in the opposite direction and increases the flow rate by
+2.3 %. The drag-decreasing case presents a consistent behaviour. Here the flow rate
increases by +1.5 %, consistently with the reduced friction. The contribution due to
streaming is still negative (−2.0 %), and is counterbalanced by the remaining +3.5 %.
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Figure 4. Changes in the mean velocity profile for (a) a drag-increasing and (b) a drag-
reducing case. Continuous line: total change in the mean velocity profile; dashed line:
contribution by streaming alone; dash-dotted line: contribution associated with the effect
of transpiration. Velocities are expressed in wall units. Note the different scale on the ordinate
in the two plots.

4.1. Flow statistics

To understand the drag reduction phenomenon, we focus on the changes induced by
wall transpiration on the near-wall turbulence, with the aid of turbulence statistics.
Two cases will be considered, with the same A+ =0.57 and a long and a short
wavelength: the first (case L) has λ+

t = 565 and an increased frictional drag, whereas
the second (case S) has λ+

t =226 and decreased drag. These simulations have been
run at a constant value of the flow rate.

We first consider, in figure 5, the streamwise evolution of the local friction coefficient

C̃f (x) along the transpiration wave, normalized to unit mean value. The effect of
transpiration is larger for the longer wavelength, thus confirming the role of the flow
rate Qt through the transpiration half-wave, but the qualitative behaviour is similar.
The local friction is always positive (there is no backflow), and remains below its
average value in regions where the transpiration velocity is positive (blowing). It
remains below the average even in a non-negligible portion of the region where the
transpiration velocity is negative (suction). This effect is more pronounced for case S.

Owing to suction, C̃f eventually rises above the mean, but its local maximum occurs
appreciably downstream of the location of maximum suction. Shortly thereafter, and
still during the suction phase, C̃f decreases again, and eventually, through the action
of blowing, drops below its mean value. The flow response to the wall blowing is thus
more local, without the phase lag that is observed between suction and drag increase.
This is in line with the observations by Chung, Sung & Krogstad (2002), who reported,
for the response of a wall flow suddenly subjected to uniform transpiration of either
sign, a spatial delay which is larger for suction than for blowing. The drag reduction
effect could be rooted in the difference between the transpiration wavelength and this
spatial delay.
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Figure 6. Variation �K+ of local turbulent kinetic energy with respect to the impermeable
case: (a) case S and (b) case L. Contour spacing 0.2, dashed lines represent negative levels.

We consider now in figure 6 the turbulent kinetic energy K, calculated from the
velocity fluctuations around the local mean, and defined as follows:

K(x, y) =
1

2
( ˜(u − ũ)2 + ˜(v − ṽ)2 + ˜(w − w̃)2).
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Figure 6 reports the spatial distribution of the difference �K+ between K+

over the transpirating wall and K+ = 〈K〉+ over the impermeable wall. The largest
differences are located near the wall, and it can be seen that the wavelength does not
affect the penetration depth at which the variations of K+ appear. K+ is reduced
in the blowing region, and increased in the suction region, where fluctuationless fluid
is injected into the flow, and increases in the suction region. In case L however, the
positive and negative variations are roughly in balance, both in intensity and spatial
extent, whereas in case S the decrease overwhelms the increase, thus yielding a global
reduction.

The reduction of turbulent fluctuations is the basis of the drag-reducing mechanism.
It has been shown quantitatively by Iwamoto et al. (2005) that the absence of
near-wall fluctuations inhibits the momentum transfer by turbulence, and results in
alleviated frictional drag. Through a DNS, where they could artificially annihilate
turbulence fluctuations in a near-wall layer of arbitrary depth to simulate the effects
of an hypothetical active control system, Iwamoto et al. (2005) have shown that
drag decreases with increasing thickness of the fluctuationless layer. In our case, the
thickness of the layer with reduced fluctuations increases with A+: this explains the
drag reduction behaviour reported in figure 3.

In figure 2 we see an inversion of the flow response to the transpiration at λ+
t ≈ 350.

Evidence has accumulated in recent years that this is indeed a typical longitudinal
length scale in near-wall turbulence. Jiménez & Moin (1991) with their minimum
channel DNS estimated at L+

x ≈ 300 − 400 the minimal extent of the computational
domain that is needed to sustain the turbulence cycle. This is also the typical length of
the quasi-streamwise vortical structures described by Jeong et al. (1997). Their results,
based on a specifically chosen indicator for the presence of vortices, indicate clearly
that near the wall the dominant coherent structures are quasi-streamwise vortices with
partial overlap in the streamwise direction. The basic flow unit, consisting of a pair of
such vortices with opposite sense of rotation, has a streamwise extent of approximately
400 wall units. These results have been confirmed by Schoppa & Hussain (2002),
who addressed the issue of the dynamical evolution of the coherent structures, and
introduced the notion of streak transient growth to explain the generation of new
streamwise vortices. Interestingly, they found that the streaks exhibit the strongest
instability to spanwise velocity perturbations with a streamwise wavelength of 400
wall units. Moreover, the transient nonlinear energy growth reaches its maximum after
20–40 viscous time units, a time scale which compares well with the threshold value
of λ+

t when converted into a spatial scale through a suitable value (Quadrio & Luchini
2003) of the near-wall convection velocity. Finally, the stability analysis carried out
by Jiménez et al. (2001) has shown that, in the turbulent flow over passive porous
walls (at Reynolds numbers and porosity levels comparable with the present ones),
the roll-like dominant structures change their stability properties and become stable
when their wavelength decreases below approximately 350 viscous lengths. This again
suggests that the drag-increasing phenomena related to the sinusoidal forcing at the
wall could work efficiently as long as the wavelength of the forcing is larger than this
threshold.

The injection of fluctuationless fluid is visualized qualitatively in figure 7, which
shows a case where the effects of the drag-reducing mechanism are made more evident
by employing the larger value of A+ = 2.4. An instantaneous representative flow field
is considered, and contours of streamwise vorticity in an (x, y)-plane are shown.
(Jeong et al. (1997) have demonstrated that in the near-wall region ωx is a good
qualitative indicator for streamwise vortices.) Each vortex appears to interact with
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Figure 8. Two-dimensional, instantaneous spatial distribution of u+ − 〈u+〉 at y+ ≈ 5 for
case S. Contours are from −3 to 8.5 with unit increment, negative values are dashed.

the region of fluctuationless fluid injected into the channel from the wall through
a strong layer of opposite-sign vorticity, much like the secondary vorticity which
develops between the same vortex and an impermeable wall due to the kinematic
consequences of the no-slip condition. This strong layer contributes to the weakening
of the parent structure, which first becomes more inclined to the wall (see for example
the top wall in figure 7), and eventually is ejected into the bulk of the flow (bottom
wall).

The structure of near-wall turbulence is not affected dramatically by small-
wavelength transpiration. In figure 8 the instantaneous field u−〈u〉 at y+ ≈ 5 and case
S is presented. The elongated low-speed regions are still present, though modulated by
the transpiration wave. Note that the picture does not change qualitatively when the
fluctuations around the local mean ũ field are plotted instead. An effect of the suction
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Figure 9. Mean streamlines for case L, over one full wavelength. The underlying colour levels
indicate the mean wall-normal velocity field ṽ+(x, y), and are from −1 to 1 with increment
0.2.

is to create high-speed patches, aligned along the span, over the suction area. It is
noteworthy that the longitudinal streaky structure of the flow completely disappears
in case L (not shown), thus confirming that in this case the turbulence production
mechanism near the wall is qualitatively altered by the transpiration.

5. Presence of large-scale streamwise vortices
One point of interest of the present flow is the possible presence of large-scale

streamwise vortices, where the term ‘large’ refers to vortices extending throughout the
whole channel gap. Such vortices might be of practical importance: they may lead to
a significant drag reduction, as shown by Schoppa & Hussain (1998), or to an increase
in turbulent mixing, as shown by Gschwind, Regele & Kottke (1995). According to
Floryan (1997), such large-scale vortices may be created in a two-dimensional laminar
Poiseuille flow by application of sinusoidal wall transpiration with zero net mass flux.
Floryan (2003) describes in detail the generation of large-scale streamwise vortices in
a laminar Couette flow with sinusoidal transpiration at the walls. Recent experiments
show the appearance of large vortical structures in both laminar and turbulent flow
in a channel with one wavy wall (Günther & Rudolph von Rohr 2003), though their
visualization of a vortical structure in turbulent regime is a very difficult task. Similar
vortices have been reportedly found in the turbulent boundary layer over a wavy
wall (Gong, Taylor & Dörnbrack 1996), and in the interaction between a steady wind
shear and surface waves in the ocean, where they are known as Langmuir circulations
(Leibovich 1983).

The problem can be attacked by following two approaches. The obvious way is to
search the DNS database for the presence of such vortices. An alternative strategy
is to resort to the same tools, drawn from stability theory, which have demonstrated
presence of vortices in the laminar regime. In this Section the outcomes and limitations
of both approaches will be discussed.

5.1. DNS analysis

The vortices we are looking for would be generated by a centrifugal instability
mechanism induced by curvature. DNS results show clearly that a significant curvature
of the mean streamlines is indeed present. Streamlines are plotted in figure 9, together
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Figure 10. One-dimensional spanwise autospectral density function for (a) u and (b) w,
evaluated at y+ ≈ 5: comparison between case L (dashed line), case S (continuous line), and
the reference flow (symbols).

with the full ṽ(x, y) field. The streamlines for case S (with small Qt ) show appreciable
curvature up to y/h ≈ 0.1, while in case L (with larger Qt ) their curvature extends
through a significant portion of the channel.

If large-scale vortices, due to curvature effects, were present in the flow, they would
show in one-dimensional autospectral density functions, like the one reported in
figure 10, through a discernible peak at the preferred spanwise vortex wavenumber.
These spectra are modified for the flow over the impermeable wall, but no evident
peak can be observed. Various distances from the wall have been considered, and the
same qualitative conclusion has been reached.

Figure 11 shows, comparing case S and case L, the streamwise evolution of the one-
dimensional spanwise autocorrelation function Ruu(�z) for the longitudinal velocity
component at y+ ≈ 5. The presence of vortices would translate into a constant region
of negative correlation for some spanwise separation. It might be useful to recall that
this is not a two-dimensional correlation, since the abscissa on the plot is the actual
streamwise coordinate, while the other coordinate is the spanwise separation �z. In
the reference flow, this quantity does not present any x evolution. Again no evidence
of streamwise vortices (neither at this y position nor at the others checked) can be
found. In case S Ruu(�z) does not appreciably evolve over x/λt and is quantitatively
similar to the impermeable case, whereas in case L transpiration has a direct effect on
the turbulence structure near the wall, as already observed. The structure of Ruu(�z)
is destroyed over the suction area, to partially recover over blowing.

5.2. Stability theory

Modelling large-scale coherent structures as instability ‘modes’ of the turbulent mean
velocity profile is a questionable approach, which nevertheless has led to some success
in the past. For example Crighton & Gaster (1976) considered a turbulent jet and
argued that turbulence sets up an equivalent laminar flow profile for large-scale
coherent modes, and arrived at numerical results which were supported by available
measurements.
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Figure 11. One-dimensional spanwise autocorrelation function Ruu(�z) along the trans-
piration wave, at y+ ≈ 5. Comparison between (a) case S and (b) case L. Contours are
levels of the correlation coefficient from 0.1 with 0.1 increments. Negative values are dashed,
from −0.05 with 0.05 decrements.

We have thus carried out such an analysis to further investigate the presence
of large-scale vortices. The analysis consists of two main steps, and we refer the
interested reader to Floryan (1997) for full details of the analysis and its numerical
implementation in the laminar case. We start from the DNS-computed turbulent
mean velocity profile over the impermeable wall, then the two-dimensional base flow
induced by the transpiration is determined, and eventually the stability of this x-
dependent base flow is studied via an eigenvalue analysis, to ascertain the presence
of streamwise vortices with a preferential spanwise wavelength.

The velocity field v2 = [u2, v2] and the pressure p2 describing the base flow with
transpiration are represented as

v2(x, y) = [U0(y), 0] + [u1(x, y), v1(x, y)], p2(x, y) = Px + p1(x, y), (5.1)

where U0(y) is the mean velocity profile, computed from the reference DNS for
the turbulent flow without transpiration, and u1, v1 and p1 are the two-dimensional
velocity and pressure modifications due to the presence of the transpiration. The
constant P denotes the streamwise pressure gradient of the unmodified flow. Sub-
stitution of (5.1) into the Reynolds-averaged Navier–Stokes and continuity equa-
tions, introduction of stream function Ψ and elimination of pressure lead to a set of
ordinary differential equations for the Fourier coefficients of Ψ , to be solved using a
Chebyshev collocation method. The velocity field v2 (or, equivalently, the modification
field v1) can be easily computed afterwards. The resulting velocity components are
represented in the form

u1(x, y) =

n=+∞∑
n=−∞

U (n)(y)einαt x, v1(x, y) =

n=+∞∑
n=−∞

V (n)(y)einαt x . (5.2)
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Unsteady, three-dimensional disturbances v3 and p3 are then superimposed on the
two-dimensional solution, in the form

v = v2(x, y) + v3(x, y, z, t), p = p2(x, y) + p3(x, y, z, t). (5.3)

This assumed form of the flow is substituted into the field equations, the mean part
is subtracted and the equations are linearized. Our interest is in disturbances in the
form of streamwise vortices and thus the solution is assumed in the form

[u3, v3, p3] = [û3(x, y), v̂3(x, y), p̂3(x, y)] cos (βz) eσ t , (5.4a)

w3 = ŵ3(x, y) sin (βz) eσ t , (5.4b)

where β is the spanwise wavenumber of the vortices and σ is their amplification rate.
The disturbance field is subject to periodic modulation in the streamwise direction:

q̂3(x, y) =

n=+∞∑
n=−∞

q (n)(y)einαt x, (5.5)

where q̂3 is real and stands for any flow quantity (i.e. û3, v̂3, ŵ3, p̂3), q (n) = q (−n)∗

and a star denotes complex conjugate. Substitution of (5.2) and (5.5) into the
equations of motion and some re-arrangements lead to a system of equations for each
pair (u(n), v(n)), n � 0, subject to homogeneous boundary conditions. The differential
problem is an eigenvalue problem for the amplification rate σ . Its numerical solution
involves truncating the sum in (5.5) after a finite number N of terms, using the
collocation method to discretize the retained equations and spectral decomposition
of the resulting matrix.

The key assumption in this procedure is the role of turbulent fluctuations. As a
first step, fluctuations can be neglected, and the analysis can be carried out as in the
laminar case, with the turbulent mean velocity profile 〈u(y)〉 for the impermeable case
taking the role of the parabolic Poiseuille profile as the base flow U0(y). In this case,
documented by Quadrio, Floryan & Luchini (2005), the stability results do not agree
with DNS data, and predict the development of large-scale vortical structures in the
turbulent flow, with the largest instability taking place for a spanwise wavenumber of
βh ≈ 2.5 when the transpiration wavenumber is αt = 1.8 (at intensity A/Uc = 0.004).

A better way to account for turbulence fluctuations is modelling Reynolds stresses
via a variable eddy viscosity: this approach has been followed by, among others,
Reynolds & Tiedermann (1967), Jiménez et al. (2001) and Reau & Tumin (2002). If
we define

M = 1 + νt = −y(dU0/dy)y=−1

dU0/dy
,

where M stands for the viscosity made dimensionless using the molecular viscosity and
νt denotes the dimensionless eddy viscosity, the outcome of the analysis is different:
now the prediction is that vortices do not develop, since disturbances of the form
(5.4) decay in time for any combination of β and A. This suggests that low-Reynolds-
number effects, together with diffusion due to turbulence, may explain the absence
of the large structures, which might however be observed in datasets obtained from
higher-Re experiments or simulations.

Limitations in computational resources prevented us from exploring whether the
presence of streamwise vortices can be detected at much higher Re. We can however
shed some light on the validity of the present approach, by comparing the field v1

as extracted from the DNS database to the same quantity as computed from the
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Figure 12. Field v1 computed following the method described in § 5.2 with turbulent viscosity
(lines) and extracted from the DNS database (symbols), for Re= 2833, suction amplitude
A/Uc =0.0254 and αth = 2.0. (a) u1 component. (b) v1 component. Different line types
correspond to different positions along the transpiration wave. Continuous: x/λt = 0; dashed:
x/λt = 0.25; dash-dotted: x/λt = 0.5; dotted: x/λt = 0.75.

above-mentioned assumptions, with turbulent viscosity turned on. It can be seen
in figure 12 that the overall features of the mean flow modifications induced by
transpiration are captured quite well by our relatively simple analysis. Some differences
can be observed however, particularly in the near-wall region for the u1 profile and
over the suction part. The v1 profiles are reproduced well, though the DNS shows
slightly larger maxima at x/λt = 0 and x/λt = 0.5, and smaller ones at x/λt = 0.25 and
x/λt = 0.75. If one considers the sweeping modelling assumptions behind our analysis,
the present results provide encouragement that such an analysis would give at least
qualitative guidance.

6. Conclusions
The effect of a sinusoidal distribution of transpiration at the walls of a turbulent

channel flow has been examined, by carrying out a number of direct numerical
simulations and by systematically changing both the intensity A+ and the wavelength
λ+

t of the forcing. A significant effect of λ+
t has been noticed.

For long wavelengths, there is a dramatic increase in frictional drag the turbulent
drag for relatively small values of the transpiration intensity. The increase in frictional
drag Cf has been quantified for a wide range of parameters.

When the transpiration wavelength is decreased below a threshold value, given by
λ+

t ≈ 350, the drag increase disappears, and an opposite effect takes place: a small but
definite reduction of the frictional drag. These variations of Cf , which are sometimes
small in absolute terms, have been demonstrated to be neither an artifact of numerical
inaccuracies, nor a low-Re effect. We have measured a drag reduction of up to 13.0 %



Streamwise-periodic wall transpiration in turbulent flow 441

for A+ = 4.7 and λ+
t = 226. The scaling of the threshold wavelength in wall units has

been verified by running a few simulations at a higher value of the Reynolds number.
Below the threshold value of λ+

t , which has been linked to a typical length scale of the
near-wall turbulence cycle, the transpiration effectively interacts with the near-wall
streamwise vortices to shield the wall from the high-friction events connected with
them. The physical mechanism for this drag reduction phenomenon is the reduction
of turbulent fluctuations, due to the combined action of extracting turbulent fluid
through suction and of blowing fluctuationless fluid into the flow. The transpiration
wave at the wall produces an additional effect, due to steady streaming, which has
been shown to be always in the direction of increasing the drag, at least in the
range of parameters considered. (We are aware of laminar-flow examples where the
effect of streaming is drag-reducing for some wavenumbers and drag-increasing for
others.)

Despite their potential application appeal, large-scale streamwise vortices have not
been found in the flow, at least for the present value of the Reynolds number: it
can thus be concluded that turbulent diffusion overwhelms the curvature-induced
instability mechanism, which is responsible for the appearance of such vortices in the
laminar regime. While vortices may exist at higher values of Re, at the present Re
flow perturbations appear to be stable, according to a stability analysis of the mean
velocity profile, made in analogy with the laminar case. The two-dimensional base
flow induced by transpiration and computed in the stability analysis is found to be in
agreement with DNS results, thus corroborating the approach of studying – at least
qualitatively – a turbulent flow through a stability analysis of its mean velocity profile,
and accounting for the effects of turbulence fluctuations via the turbulent viscosity
concept.

This work has been carried out with support of NSERC and SHARCNET of
Canada. SHARCNET of Canada provided part of the computing resources, while
some simulations have been run on the Opteron system by P. L. at the Università di
Salerno. Preliminary results have been communicated by M. Q. at the 49th Annual
Meeting of the Canadian Aeronautics and Space Institute, Montréal, April 2003, and
at the 5th Euromech Fluid Mechanics Conference, Toulouse, August 2003.

Appendix. Accuracy check
We give here a brief account of the accuracy of the time-averaged value of the

friction coefficient, computed according to its definition (3.1), for the simulations at
Reτ = 180.

The discretization parameters listed in § 2.1 match those employed by Kim et al.
(1987) in their widely quoted DNS of turbulent channel flow at the same value of
Re. We are thus confident in the accuracy of our results for the impermeable case. In
fact we compute for A= 0 a value of Cf = 8.15 × 10−3, which differs from the value
reported by Kim et al. by 0.4 % only.

When transpiration is applied, the physics of the flow changes, as do the spatial
gradients of the flow variables. Strong shear layers are present, as noticed for example
by Park et al. (2001) in their pulsating suction experiments. We have therefore carried
out a number of additional simulations, including – but not limited to – spatial-
resolution checks, with the aim of assessing the error margins of the results: they
are summarized in table 1. We have selected three particular test cases, identified by
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Ny Nx Nz �y+
max �x+ �z+ 103Cf ε εd

case A 129 193 161 7.3 17.9 10.8 12.40 – –
A1 257 193 161 3.7 17.9 10.8 12.34 −0.5 1.4

case B 129 193 161 4.6 11.3 6.8 7.85 – –
B1 257 193 129 2.3 11.3 6.8 7.86 +0.1 3.3
B2 129 385 161 4.6 5.7 6.8 7.89 +0.4 13.3
B3 129 193 321 4.6 11.3 3.4 7.85 +0.0 0.0
B4 129 193 161 4.6 11.3 6.8 7.86 +0.2 6.6
B5 129 193 161 4.6 11.3 6.8 7.89 +0.4 12.0

case C 129 193 161 4.4 10.9 6.6 7.55 – –
C1 257 193 161 2.2 10.9 6.6 7.68 +1.7 21.6

Table 1. Dependence of the computed value of Cf upon the discretization parameters, for

three representative cases at Reτ = 180, indicated as case A (λ+
t = 565 and A+ = 0.7), case B

(λ+
t =226 and A+ = 0.7), and case C (λ+

t = 226 and A+ = 2.82). Departures from the baseline
parameters are indicated in italics. The corresponding friction velocity of each case is used to
express the size of the computational grid in wall units, and �y+

max is the maximum spacing
in the wall-normal direction. The percentage errors ε and εd are defined in the text. In run B4
transpiration has been applied to one wall only. In run B5 transpiration has been applied at
both walls according to the boundary conditions (A 1).

specific combinations of A and λt . They are representative of simulations with small
A and large λt (case A), small A and small λt (case B), large A and small λt (case C).

Runs A1, B1–B3 and C1 are resolution checks, where the number of points in one
direction is doubled. In run B4 transpiration is applied at one wall only. Run B5
has transpiration applied on both walls, but, unlike the baseline boundary condition
given by (2.1), here at a given x position suction at one wall corresponds to suction
on the opposite wall too, i.e.

v(x, −1, z) = A cos (αtx) , v(x, +1, z) = −A cos (αtx) . (A 1)

In table 1 two quantities are computed, defined as

ε = 100
Cf,check − Cf,t

Cf,t

, εd = 100

∣∣∣∣Cf,check − Cf,t

Cf,0 − Cf,t

∣∣∣∣ .

Here Cf,0 is the friction coefficient computed in the impermeable case, Cf,t is the
friction coefficient computed with transpiration turned on and with the baseline
computational parameters previously described in § 2.1, and Cf,check is the friction
coefficient computed in the current check; ε is an estimate of the percentage error in
the evaluation of Cf , while εd is representative of the percentage error in the change
of Cf due to a given distribution of transpiration.

When transpiration causes Cf to increase significantly above the impermeable
value (case A), the spatial resolution becomes only just sufficient owing to the overall
increase of the friction Reynolds number, but εd remains small, of the order of 1 %. In
the most interesting region where the turbulent friction is reduced, the resolution study
indicates that only the streamwise resolution is increasing worth further, with an εd of
the order of 10 % and an absolute error below 1 %. However, when the transpiration
intensity is larger (case C), ε remains low but the percentage error in the variation in
Cf , as indicated by εd , is not negligible anymore, amounting to approximately 20 %.
This motivated us to carry out several simulations (described in connection with
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figure 3), and particularly those with transpiration intensity A+ � 2.35, with doubled
resolution in all spatial directions.
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